NUCLEATION IN A BISTABLE BELOUSOV-ZHABOTINSKII SYSTEM

M. KERN
Karl-Weierstrass-Institut für Mathematik, Mohrenstrasse 39, D-01086 Berlin, Germany
H.-J. KRUG and L. POHLMANN
Zentralinstitut für Physikalische Chemie, Rudower Chaussee 5, D-01199 Berlin, Germany

Received 4 September 1990

Abstract

A new model of the Belousov - Zhabotinskii reaction is developed. It describes bistable behavior of the reaction. For this reaction-diffusion system existence results are proved. The critical radius of a nucleus is defined and studied by numerical methods.

1. Introduction

Nucleation and bistability are characteristic phenomena of many autocatalytical systems. Nitzan et al. [13] first described the nucleation of a new phase in a bistable one-variable system using a third-order reaction function. They showed the existence of a critical radius r_{c}, beyond which a nucleus of the new phase will grow on or will collapse if its radius is below r_{c}. These results are not directly applicable to the Belousov-Zhabotinskii reaction (BZR), whose kinetics are governed by maximum second-order reaction terms [4]. A model of the BZR reflecting the bistability of this reaction requires at least two variables.

Our aim is to discuss a model of bistability and nucleation in convection-free layers of $B Z$ solutions in petri dishes. We consider the following subsystem of the full BZR in order to confine our model to two variables only, the concentrations of the autocatalyst HBrO_{2} and the inhibitor Br^{-}:

$\mathrm{BrO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{Br}^{-}$	\longrightarrow	HBrO
2	HOBr	
$\mathrm{HBrO}_{2}+\mathrm{H}^{+}+\mathrm{Br}^{-}$	\longrightarrow	R 2
$\mathrm{BrO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{HBrO}_{2}+2 \mathrm{Me}(\mathrm{red})$	\longrightarrow	$2 \mathrm{HBrO}_{2}+2 \mathrm{Me}(\mathrm{ox})$
$2 \mathrm{HBrO}_{2}$	\longrightarrow	R 3
		$\mathrm{BrO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{HOBr}$

We neglect the concentrations of metal catalysts Me (red), Me (ox) and HOBr , and assume that the concentrations of BrO_{3}^{-}and H^{+}are constant.

Additionally, we introduce a flow term $\varphi_{\mathrm{Br}^{-}}$. This corresponds to the inhibitor release induced both by oxygen diffusing from the air into the liquid layer [10] and/or by light irradiation when the BZ system is photosensitive [9].

On the basis of this realistic flow term, the behavior of the system R1-R4 turns from monostability to bistability within a distinct region of $\varphi_{\mathrm{Br}^{-}}$. In the region of bistability, the reaction-diffusion system performs transitions from one stable state to the other if the radius of the inducing nucleus exceeds a critical value r_{c}. The critical radius itself depends in the flow φ_{Br}. This relation $r_{\mathrm{c}}=r_{\mathrm{c}}\left(\varphi_{\mathrm{Br}}\right.$) is studied numerically. We found that the quantity r_{c} tends to infinity if the flow term tends to a certain value $\varphi_{\mathrm{Br}^{-}}^{\text {coex }}$. If we take a higher value $\varphi>\varphi_{\mathrm{Br}^{-}}^{\text {cox }}$, then we observe transitions to the other stable state.

2. The model

So, we start with the following system

$$
\begin{align*}
& \frac{\partial X}{\partial t}=d_{x} \frac{\partial^{2} X}{\partial r^{2}}+k_{3} A X-2 k_{4} X^{2}-k_{2} X Y+k_{1} A Y \\
& \frac{\partial Y}{\partial t}=d_{y} \frac{\partial^{2} Y}{\partial r^{2}}-k_{2} X Y-k_{1} A Y+\varphi_{\mathrm{Br}^{-}} \tag{1}
\end{align*}
$$

where $r \in \mathbb{R}, t>0 . X=\left[\mathrm{HBrO}_{2}\right], Y=\left[\mathrm{BrO}_{3}^{-}\right], d_{x}, d_{y}$ are diffusion coefficients of HBrO_{2} and Br^{-}, respectively, and k_{i} are the velocity constants. Table 1 contains the values of parameters.

Table 1
Values of parameters [3, 8]

Parameter	Value	Unit
k_{1}	$2.1\left[\mathrm{H}^{+}\right]^{2}$	$\mathrm{M}^{-1} \mathrm{~s}^{-1}$
k_{2}	$10^{5}\left[\mathrm{H}^{+}\right]$	$\mathrm{M}^{-1} \mathrm{~s}^{-1}$
k_{3}	$45\left[\mathrm{H}^{+}\right]$	$\mathrm{M}^{-1} \mathrm{~s}^{-1}$
k_{4}	10^{3}	$\mathrm{M}^{-1} \mathrm{~s}^{-1}$
φ	arbitrary	M s
$\left[\mathrm{H}^{+1}\right]$	0.16	M
A	0.2	M
d_{x}	1.3×10^{-5}	$\mathrm{~cm}^{2} \mathrm{~s}^{-1}$
d_{y}	1.9×10^{-1}	$\mathrm{~cm}^{2} \mathrm{~s}^{-1}$

By the substitution

$$
\begin{aligned}
u_{1} & :=2 k_{4} X / k_{3} A, \\
u_{2} & :=k_{2} Y / k_{3} A, \\
D & :=10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, \\
x & :=\left(k_{3} A D^{-1}\right)^{1 / 2} r, \\
t^{\prime} & :=k_{3} A t, \\
\varphi & :=k_{2} /\left(k_{3} A\right)^{2} \varphi_{\mathrm{Br}^{-}}, \\
m & :=k_{1} / k_{3}, \\
b & :=k_{2} / k_{4}, \\
q & :=2 k_{1} k_{4} / k_{2} k_{3}=m / b, \\
d_{1} & :=d_{x} / D, \\
d_{2} & :=d_{y} / D,
\end{aligned}
$$

see [12], we obtain from (1) an equivalent dimensionless system of partial differential equatons. Let us consider this system on a bounded interval Ω, and let us establish this sytem with no flux boundary conditions and initial value. We then obtain

$$
\begin{align*}
& \frac{\partial u_{1}}{\partial t^{\prime}}=d_{1} \frac{\partial^{2} u_{1}}{\partial x^{2}}+u_{1}\left(1-u_{1}-u_{2}\right)+q u_{2} \\
& \frac{\partial u_{2}}{\partial t^{\prime}}=d_{2} \frac{\partial^{2} u_{2}}{\partial x^{2}}-b u_{1} u_{2}-m u_{2}+\varphi \tag{2}\\
& x \in \Omega, t^{\prime}>0, \partial u_{i} / \partial n(\partial \Omega)=0, u_{i}(0, x)=u_{0 i}(x), i=1,2
\end{align*}
$$

3. The reaction system

Stationary solutions $u_{\mathrm{s}}=\left(u_{\mathrm{s} 1}, u_{\mathrm{s} 2}\right)$ of the corresponding reaction system

$$
\begin{align*}
& \frac{\mathrm{d} u_{1}}{\mathrm{~d} t^{\prime}}=u_{1}\left(1-u_{1}-u_{2}\right)+q u_{2} \\
& \frac{\mathrm{~d} u_{2}}{\mathrm{~d} t^{\prime}}=-b u_{1} u_{2}-m u_{2}+\varphi \tag{3}
\end{align*}
$$

are solutions of the system

$$
\begin{align*}
& 0=u_{1}\left(1-u_{1}-u_{2}\right)+q u_{2} \\
& 0=-b u_{1} u_{2}-m u_{2}+\varphi \tag{4}
\end{align*}
$$

The system (4) is equivalent to

$$
\begin{align*}
& u_{2}=\varphi /\left(m+b u_{1}\right) \tag{5}\\
& u_{1}^{3}+u_{1}^{2}(m-b) / b+u_{1}(\varphi-m) / b-q \varphi / b=0 \tag{6}
\end{align*}
$$

We are only interested in real, positive solutions $u_{s}^{(j)}, j=1,2,3$. Regarding φ as a function of $u_{1}: \varphi=\varphi\left(u_{1}\right)$, from (6) we obtain the equivalent equation

$$
\begin{equation*}
\varphi\left(u_{1}\right)=u_{1}\left(1-u_{1}\right)\left(m+b u_{1}\right) /\left(u_{1}-q\right) \tag{7}
\end{equation*}
$$

Let us briefly discuss this function (7): Since $1-q>0, \varphi$ tends to infinity for $u_{1} \rightarrow q$. Moreover, φ vanishes at $u_{1}=1, u_{1}=0, u_{1}=-m / b=-q$. Using parameter values of table 1 , one obtains the positive local extrema of φ :

$$
\begin{array}{ll}
u_{\mathrm{s} 1_{\max }}=0.499063, & \varphi_{\max }=2.007756 \\
u_{\mathrm{s} 1_{\min }}=0.002257, & \varphi_{\min }=0.045723
\end{array}
$$

Fig. 1. Bistability diagram for $u_{s 1}$ with the parameters $m=0.008, b=8.0$, $q=0.001$. The upper branch (full line) corresponds to $u_{11}^{(3)}$, the middle branch (broken line) to $u_{s 1}^{(2)}$, and the lower branch (full line) to $u_{s 1}^{(1)}$.

In this way, we obtain the qualitative behaviour of (7) and therefore of (6), as shown in fig. 1. Let

$$
u_{\mathrm{s} 1}^{(3)} \geq u_{\mathrm{s} 1}^{(2)} \geq u_{\mathrm{s} 1}^{(1)}
$$

and $\varphi_{0}:=\varphi_{\min }, \varphi_{\mathrm{M}}:=\varphi_{\max }$. The stability behavior of $u_{\mathrm{s}}^{(j)}$ can be determined easily:

LEMMA 3.1

(i) The equilibrium $u_{s}^{(1)}$ is asymptotically stable (in the sense of Lyapunov and with respect to system (3)), if $\varphi>\varphi_{0}$;
(ii) $u_{\mathrm{s}}^{(2)}$ is unstable for all $\varphi_{0}<\varphi<\varphi_{\mathrm{M}}$;
(iii) $u_{\mathrm{s}}^{(3)}$ is asymptotically stable for all $0 \leq \varphi<\varphi_{\mathrm{M}}$.

Proof
The linearization of (3) in u_{s} and substitution of (5) yield a (linear in φ) equation for the zero eigenvalue. This equation is equivalent to (7). Its extrema give the points where u_{s} changes its stability. Purely imaginary eigenvalues do not appear.

Now assume there is given an initial value

$$
\begin{equation*}
u(0)=u_{0} \in \mathbb{R}^{2} \tag{8}
\end{equation*}
$$

We shall prove that there exists a global solution of (3), (8) for some initial values u_{0}. It is clear that for every $u_{0} \in \mathbb{R}^{2}$, the problem (3), (8) has a unique local solution.

Let

$$
\begin{aligned}
& 0<q<1,0<\varepsilon<\varphi /(m+b) \\
& G_{1}:=\left\{q \leq u_{1} \leq 1, \varepsilon \leq u_{2} \leq \varphi / m\right\}
\end{aligned}
$$

THEOREM 3.2

Assume $u_{0} \in G_{1}$. Then the solution $u\left(t^{\prime}\right)$ of (3), (8) exists for all $t^{\prime}>0$ and is bounded, and $u\left(t^{\prime}\right) \in G_{1}$ for all $t^{\prime} \geq 0$.

Proof

Checking the vector field of (3) (see fig. 2) on the bounds of G_{1} gives that there is no trajectory leaving G_{1}. Thus, the assertion is proved.

Furthermore, the following theorem holds:

THEOREM 3.3

Closed trajectories do not exist in G_{1}.
Proof
Applying the Dulac criterion ([1], p. 120), we obtain by the Dulac function $B\left(u_{1}, u_{2}\right)=1 / u_{1}$:

Fig. 2. The vector field of the system (3).

$$
\begin{aligned}
D & :=\frac{\partial}{\partial u_{1}}\left(B\left(u_{1}, u_{2}\right) f_{1}\left(u_{1}, u_{2}\right)\right)+\frac{\partial}{\partial u_{2}}\left(B\left(u_{1}, u_{2}\right) f_{2}\left(u_{1}, u_{2}\right)\right) \\
& =-1-q u_{2} / u_{1}^{2}-b-m / u_{1}<0
\end{aligned}
$$

where $f=\left(f_{1}, f_{2}\right)$ is the reaction term in (3). This proves the assertion.

COROLLARY 3.4

Let $u_{0} \in G_{1}, u_{0} \neq u_{\mathrm{s}}^{(j)}, j=1,2,3$. Then the solution $u\left(t^{\prime}\right.$ of (3), (8) converges either to $u_{\mathrm{s}}^{(1)}$ or $u_{\mathrm{s}}^{(3)}$ for $t^{\prime} \rightarrow \infty$, and $u\left(t^{\prime}\right)$ tends to $u_{\mathrm{s}}^{(2)}$ for $t^{\prime} \rightarrow-\infty$.

Proof

The assertion follows from the Bendixon theorem, see e.g. [6].

4. Global existence of solutions

In this section, we shall investigate the global existence of solutions of problem (1). For this reason, we formulate (1) as an evolution problem in a convenient space X. Theorem 4.7 gives the existence result in X and in classical function spaces, too. Let us introduce the following definitions and notation.

The domain $\Omega \subset \mathbb{R}^{n}, n \leq 3$, is assumed to be an open smooth bounded connected set, $\partial \Omega \in \mathbb{C}^{2}$.

$$
\begin{aligned}
& X:=L^{2}\left(\Omega, R^{2}\right),\|u\|^{2}=\int_{\Omega}\left(\left(u_{1}(x)\right)^{2}+\left(u_{2}(x)\right)^{2}\right) \mathrm{d} x, u \in X, \\
& H^{k}:=W^{k, 2}\left(\Omega, R^{2}\right), k=1,2, \ldots, \\
& \|u\|_{H^{k}}^{2}:=\|u\|^{2}+\sum_{j=1}^{n}\left\|\frac{\partial u}{\partial x_{j}}\right\|^{2}+\ldots+\sum_{\substack{l=\left(l_{1}, \ldots, l_{k}\right): \\
\sum l_{i}=k}}\left\|\frac{\partial^{k} u}{\partial x_{l_{1}} \ldots \partial x_{l_{k}}}\right\|^{2} .
\end{aligned}
$$

For a reference of the theory of the Sobolev spaces, see [14].
Let A be the linear operator $A: X \rightarrow X$, with $D(A):=\left\{\left(u_{1}, u_{2}\right): u \in \mathbb{C}^{\infty}(\Omega)^{\star}\right.$, $\left.\partial u_{i} / \partial n(\partial \Omega)=0\right\}:$

$$
A u:=-\left(d_{1} \Delta u_{1}, d_{2} \Delta u_{2}\right)
$$

where $d_{1}, d_{2}>0$. We define the operator A to be the Friedrich extension of \boldsymbol{A}.

[^0]The next lemma summarizes some simple but helpful properties of this operator A :

LEMMA 4.1

Let $d:=\max \left(d_{1}, d_{2}\right)$. It holds that:
(i) $\quad\langle(A+d I d) u, u\rangle \leq 2 d\|u\|_{H^{1}}^{2}, \quad u \in D(A)$.
(ii) $\min \left(d_{1}, d_{2}\right)\|u\|_{H 1}^{2} \leq\langle(A+d I d) u, u\rangle, \quad u \in D(A)$.
(iii) $D(A) \subset H^{1}$, and
$\langle A u, v\rangle=\left\langle\left(d_{1} u_{1}^{\prime}, d_{2} u_{2}^{\prime}\right), v^{\prime}\right\rangle, \quad u \in D(A), v \in H^{1}$.
(iv) $D\left((A+d I d)^{1 / 2}\right)=H^{1}$.
(v) The operator $A+d I d$ is selfadjoint and positive.
(vi) The operator $-(A+d I d)$ generates an analytic semigroup $\exp (-t(A+d I d)): X \rightarrow D(A)$, and
$\exp (-t(A+d I d)) \leq c_{1} \exp (-d t / 2), \quad t \geq 0$.
Proof
(i) $\quad\langle(A+d I d) u, u\rangle \leq d\langle\nabla u, \nabla u\rangle+d\langle u, u\rangle \leq 2 d\|u\|_{H^{1}}^{2}$.
(iii) See [11].
(iv) The assertion follows from

$$
\left\langle A_{d} u, u\right\rangle=\left\langle A_{d}^{1 / 2} u, A_{d}^{1 / 2} u\right\rangle=\left\|A_{d}^{1 / 2} u\right\| .
$$

(vi) Compare [5].

Set $A_{d}:=A+d I d$ with domain $D\left(A_{d}\right):=D(A)$. By
$F(u):=\binom{u_{1}\left(1-u_{1}-u_{2}\right)+q u_{2}}{-b u_{1} u_{2}-m u 2+\varphi}, \quad q, b, m, \varphi>0, q<1$,
a nonlinear operator $F: H^{1} \rightarrow X$ is defined.
Now, we may write (2) as an initial value problem

$$
\begin{array}{ll}
\frac{\mathrm{d} u}{\mathrm{~d} t}+A u=F(u), & t>0 \\
u(0)=u_{0}, & u_{0} \in X \tag{10}
\end{array}
$$

(Now, we shall write t instead of t^{\prime}.)

We define a solution of (10) on $(0, T)$ to be a map $u \in \mathbb{C}^{1}((0, T), X) \cap \mathbb{C}([0, T), X)$, $u(t) \in D(A)$ for all $t \in(0, T)$ and some $T>0$, and which solves (10).

We shall prove the unique solvability of problem (10) by investigating the modified system

$$
\begin{array}{ll}
\frac{\mathrm{d} u}{\mathrm{~d} t}+A u=F_{k}(u), & t>0 \\
u(0)=u_{0}, & u_{0} \in X \tag{11}
\end{array}
$$

Here, $F_{k}: X \rightarrow X$ is the operator

$$
F_{k}(u):=\binom{u_{1 k}\left(1-u_{1 k}-u_{2 k}\right)+q u_{2}}{-b u_{1 k} u_{2 k}-m u_{2}+\varphi},
$$

and $u_{i k}$ are the following projections:

$$
u_{i k}(x):=\left\{\begin{array}{cl}
0 & \text { if } 0 \geq u_{i}(x) \\
u_{i}(x) & \text { if } 0 \leq u_{i}(x) \leq k_{i} \\
k_{i} & \text { if } k_{i} \leq u_{i}(x)
\end{array}\right.
$$

$i=1,2$, where k_{i} are some positive constants to be chosen later. Obviously, the mapping $u \rightarrow u_{i k}$ gives a pair ($u_{1 k}, u_{2 k}$), and $u_{1 k}\left(u_{2 k}\right)$ is bounded by 0 and $k_{1}\left(k_{2}\right)$, respectively.

LEMMA 4.2

$$
F_{k}: X \rightarrow X \text { is globally Lipshitzian. }
$$

Proof

$$
\begin{aligned}
\left\|F_{k}(u)-F_{k}(v)\right\|^{2}= & \int_{\Omega}\left(\left(u_{1 k}\left(1-u_{1 k}-u_{2 k}\right)+q u_{2}-v_{1 k}\left(1-v_{1 k}-v_{2 k}\right)-q v\right)^{2}\right. \\
& \left.+\left(-b u_{1 k} u_{2 k}-m u_{2}+b v_{1 k} v_{2 k}+m v_{2}\right)^{2}\right)^{2} \mathrm{~d} x \\
\leq & 4 \int_{\Omega}\left(\left(u_{1 k}-v_{1 k}\right)^{2}+\left(v_{1 k}^{2}-u_{1 k}^{2}\right)+\left(u_{1 k} u_{2 k}-v_{1 k} v_{2 k}\right)^{2}\right. \\
& \left.+q^{2}\left(u_{2}-v_{2}\right)+b^{2}\left(u_{1 k} u_{2 k}-v_{1 k} v_{2 k}\right)+m^{2}\left(u_{2}-v_{2}\right)^{2}\right) \mathrm{d} x \\
= & 4 \int_{\Omega}\left(\left(u_{1 k}-v_{1 k}\right)^{2}+\left(u_{1 k}+v_{1 k}\right)^{2}\left(u_{1 k}-v_{1 k}\right)^{2}+q^{2}\left(u_{2}-v_{2}\right)^{2}\right. \\
& \left.+m^{2}\left(u_{2}-v_{2}\right)^{2}+\left(1+b^{2}\right)\left(u_{1 k} u_{2 k}-v_{1 k} v_{2 k}\right)^{2}\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
\leq & 4 \int_{\Omega}\left(\left(1+4 k_{1}^{2}+2 k_{2}^{2}\left(1+b^{2}\right)\right)\left(u_{1}-v_{1}\right)^{2}\right. \\
& \left.+\left(2 k_{1}^{2}\left(1+b^{2}\right)+q^{2}+m^{2}\right)\left(u_{2}-v_{2}\right)^{2}\right) \mathrm{d} x \\
= & c_{\mathrm{LIP}}^{2}\|u-v\|^{2}
\end{aligned}
$$

The next lemma is an easy consequence of Sobolev's embedding theorems:

LEMMA 4.3

Let $n \leq 3, u, v \in H^{2},\|u-v\|_{H^{1}} \rightarrow 0$. Then,
$\left\|F_{k}(u)-F_{k}(v)\right\|_{H^{1}} \rightarrow 0$.

LEMMA 4.4

Let $T>0$ be any positive number. There exists a unique solution $u(t)$ of (11) on $(0, T)$; moreover, $u \in \mathbb{C}\left((0, T), H^{1}\right)$.

Proof
First, we show that the integral equation

$$
\begin{equation*}
u(t)=\exp \left(-t A_{d}\right) u_{0}+\int_{0}^{t} \exp \left(-(t-s) A_{d}\right) g(u(s)) \mathrm{d} s \tag{12}
\end{equation*}
$$

has a unique solution $u \in \mathbb{C}([0, T), X)$ satisfying $u(0)=u_{0} \in X$, where

$$
g(u):=F_{k}(u)+\mathrm{d} u
$$

Consider the operator $G: \mathbb{C}([0, T), X) \rightarrow \mathbb{C}([0, T), X)$:

$$
(G u)(t):=\exp \left(-t A_{d}\right) u_{0}+\int_{0}^{t} \exp \left(-(t-s) A_{d}\right) g(u(s)) \mathrm{d} s, \quad t>0
$$

Obviously, G maps $\mathbb{C}([0, T), X)$ into itself. Define $\|\cdot\|_{p}$ by

$$
\|u\|_{p}:=\sup _{s \in[0, T)}(\|u(s)\| \exp (-p s)), \quad p>0
$$

and equip $\mathbb{C}([0, T), X)$, with this norm. If $u, v \in \mathbb{C}[0, T), X)$, we conclude from (9):

$$
\begin{aligned}
\|(G u-G v)(t)\|=\| & \int_{0}^{t}
\end{aligned} \exp \left(-(t-s) A_{d}\right)[g(u(s))-g(v(s))] \mathrm{d} s \| .
$$

In this way, we obtain

$$
\begin{equation*}
\|G u-g v\|_{p} \leq c_{1}\left(c_{\mathrm{LIP}}+d\right) /(d / 2+p)\|u-v\|_{p} \tag{13}
\end{equation*}
$$

Now, we choose $p \gg 1$ such that $c_{2}:=c_{1}\left(c_{\text {LIP }}+d\right) /(d / 2+p)<1$, and so

$$
\begin{equation*}
\|G u-G v\|_{p} \leq c_{2}\|u-v\|_{p} \tag{14}
\end{equation*}
$$

By the Banach fixed point theorem, there exists a unique fixed point u of G in $\mathbb{C}([0, T), X)$.

By lemma 4.3, it can be shown that $u \in \mathbb{C}\left((0, T), H^{1}\right)$. Now, eq. (12) gives $u \in \mathbb{C}^{1}((0, T), X)$. It follows by the standard argument of Gronwall's lemma that the solution is unique.

LEMMA 4.5

Let $u_{0} \geq 0$. Then, for the solution u of (11), it holds that

$$
u(t) \geq 0 \quad \text { for all } t \geq 0
$$

Proof

After computing the scalar product with u_{2}^{-}and u_{1}^{-}, it is clear that

$$
u_{1}^{-} \equiv u_{2}^{-} \equiv 0
$$

(Here, we use the notation $u^{+}(x):=\max (u(x), 0), u^{-}(x):=\max (-u(x), 0)$.)

Now, we are able to solve problem (11):

LEMMA 4.6

Assume $u_{0} \geq 0, u_{0} \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$. The solution u of (11) exists on ($0, \infty$) and satisfies:

$$
\begin{align*}
& 0 \leq u_{1} \leq \max \left(1,\left\|u_{01}\right\|_{\infty}\right) \\
& 0 \leq u_{2} \leq \max \left(\varphi / m,\left\|u_{02}\right\|_{\infty}\right) \tag{15}
\end{align*}
$$

Proof
Let u be the nonnegative unique solution of (11), $t \geq 0$. Choose the constants $k_{1}:=\max \left(1,\left\|u_{01}\right\|_{\infty}\right), k_{2}:=\max \left(\varphi / m,\left\|u_{02}\right\|_{\infty}\right)$. By the test function $\left(u_{2}-k_{2}\right)^{+}$one obtains

$$
\begin{aligned}
\left\|\left(u_{2}-k_{2}\right)^{+}(t)\right\|^{2} / 2= & -d_{2} \int_{0}^{t} \int_{\Omega}\left(\nabla\left(u_{2}-k_{2}\right)^{+}\right)^{2} \mathrm{~d} x \mathrm{~d} t+\varphi \int_{0}^{t} \int_{\Omega}\left(u_{2}-k_{2}\right)^{+} \mathrm{d} x \mathrm{~d} t \\
& +\int_{0}^{t} \int_{\Omega}\left(u_{2}-k_{2}\right)^{+}\left(-b u_{1 k} u_{2 k}-m u_{2}\right) \mathrm{d} x \mathrm{~d} t \\
\leq & -m \int_{0}^{t} \int_{\Omega}\left(u_{2}-k_{2}\right)^{+}\left(u_{2}-k_{2}+k_{2}\right) \mathrm{d} x \mathrm{~d} t+\varphi \int_{0}^{t} \int_{\Omega}\left(u_{2}-k_{2}\right)^{+} \mathrm{d} x \mathrm{~d} t \\
\leq & \left(-m k_{2}+\varphi\right) \int_{0}^{t} \int_{\Omega}\left(u_{2}-k_{2}\right)^{+} \mathrm{d} x \mathrm{~d} t \\
\leq & 0 .
\end{aligned}
$$

Consequently, $\left(u_{2}(t)-k_{2}\right)^{+}=0$, and so $u_{2}(t) \leq k_{2}$. By the test function $\left(u_{1}(t)-k_{1}\right)^{+}$, we have:

$$
\begin{aligned}
-\left\|\left(u_{1}-k_{1}\right)^{+}(t)\right\|^{2} / 2= & -d_{1} \int_{0}^{t} \int_{\Omega}\left(\nabla\left(u_{1}-k_{1}\right)^{+}\right)^{2} \mathrm{~d} x \mathrm{~d} t+q \int_{0}^{t} \int_{\Omega}\left(u_{1}-k_{1}\right) u_{2} \mathrm{~d} x \mathrm{~d} t \\
& +\int_{0}^{t} \int_{\Omega}\left(u_{1}-k_{1}\right)^{+}\left(1-u_{1 k}-u_{2 k}\right) u_{1 k} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{0}^{t} \int_{\Omega}\left(u_{1}-k_{1}\right)^{+} u_{2 k}\left(-u_{1 k}+q\right) \mathrm{d} x \mathrm{~d} t \\
\leq & 0
\end{aligned}
$$

This gives $\left(u_{1}-k_{1}\right)^{+}(t)=0$, so $u_{1}(t) \leq k_{1}$.

Now, we want to prove our main result:

THEOREM 4.7

Assume $u_{0} \geq 0, u_{0} \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$. Then there exists a unique solution u of the problem (10) on ($0, \infty$) satisfying (15). Moreover, $u(t) \in \mathbb{C}^{2}\left(\bar{\Omega}, \mathbb{R}^{2}\right), \mathrm{d} u / \mathrm{d} t(t)$ $\in \mathbb{C}\left(\bar{\Omega}, \mathbb{R}^{2}\right), t>0$. This means the solution exists in the classical sense.

Proof

Let u be the solution of (11). If we choose $k_{1}:=\max \left(1,\left\|u_{01}\right\|_{\infty}\right)$, $k_{2}:=\max \left(\varphi / m,\left\|u_{02}\right\|_{\infty}\right)$, then by lemma 4.6 we obtain $u_{i k}(t)=u_{i}(t), i=1,2$, that is, (15) holds. Further, we have $F_{k}(u)=F(u)$, and $u(t)$ is the solution of (10). Since $u_{i}(t) \leq k_{i}, t \in[0, T), u_{i}(t)$ has a continuous prolongation to $(0, \infty)$, and

$$
\sup _{i>0}\left\|u_{i}(t)\right\| \leq k_{i}, \quad i=1,2
$$

Consequently, u belongs to $L^{\infty}([0, \infty), X)$.
Using theorem 3.5.2 in [5], it follows that

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}(t) \in H^{1}, \quad t>0 .
$$

Further, for $u(t) \in H^{2}$ we have $F(u) \in H^{1}, t>0$. In this way,

$$
A u=-\frac{\mathrm{d} u}{\mathrm{~d} t}+F(u) \in H^{1}
$$

and so $u(t) \in H^{3}, t>0$. Now, since $u(t) \in H^{3} \subseteq \mathbb{C}(\bar{\Omega}), F(u(t)) \in \mathbb{C}(\bar{\Omega})$ and

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}(t) \in \mathbb{C}(\bar{\Omega}), \quad n / 4<1
$$

i.e. $\mathrm{d} u / \mathrm{d} t(t) \in \mathbb{C}(\bar{\Omega})$. This yields

$$
A u=-\frac{\mathrm{d} u}{\mathrm{~d} t}+F(u) \in \mathbb{C}(\bar{\Omega}),
$$

implying $u(t) \in \mathbb{C}(\bar{\Omega})$. Consequently,

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}(t) \in \mathbb{C}(\bar{\Omega})
$$

COROLLARY 4.8

Let $u_{0} \geq 0, u_{01} \leq 1, u_{02} \leq \varphi / m$. Then the solution u of (19) exists and it holds that
$0 \leq u_{1} \leq 1$,
$0 \leq u_{2} \leq \varphi / m$.
Let

$$
G_{2}:=\left\{q \leq u_{1} \leq 1,0 \leq u_{2} \leq \varphi / m\right\}
$$

Using the same method as mentioned above but another definition of $u_{1 k}$, namely

$$
u_{1 k}(x):= \begin{cases}q & \text { if } q \geq u_{1}(x) \\ u_{1}(x) & \text { if } q \leq u_{1}(x) \leq 1 \\ 1 & \text { if } 1 \leq u_{1}(x)\end{cases}
$$

we obtain quite similar results:

LEMMA 4.9
Let $u_{0} \in G_{2}$ (respectively, G_{1}). Then the solution u of (10) exists and belongs to G_{2} (respectively, G_{1}).

5. Critical radius

The aim of this section is the investigation of the critical radius of a nucleus. Such questions have been studied in the case of one reaction-diffusion equation only [2]. Here, we consider the case $n=1, \Omega=(0, L)$.

DEFINITION 5.1

The quantity r_{c} is called critical radius with respect to (12) and the initial value

$$
\begin{align*}
& u_{01}(x)= \begin{cases}u_{\mathrm{s} 1}^{(3)} & \text { if } 0 \leq x \leq x_{1} \\
u_{\mathrm{s} 1}^{(1)} & \text { if } x_{1}<x \leq L\end{cases} \\
& u_{02}(x)= \begin{cases}u_{\mathrm{s} 2}^{(3)} & \text { if } 0 \leq x \leq x_{1} \\
u_{\mathrm{s} 2}^{(1)} & \text { if } x_{1}<x \leq L\end{cases} \tag{16}
\end{align*}
$$

if there exists a solution u of (10) with the special initial value (16) having the following properties:
(i) if $x_{1}>r_{\mathrm{c}}, u(t)$ tends to $u_{\mathrm{s}}^{(3)}$ as $t \rightarrow \infty$,
(ii) for $0<x_{1}<r_{\mathrm{c}}, u(t)$ tends to $u_{\mathrm{s}}^{(1)}$ as $t \rightarrow \infty$.

The problem (10) with initial value (16) was integrated by the Euler difference method. Observing the coexistence of two asymptotically stable equilibria $u_{\mathrm{s}}^{(1)}$ and $u_{\mathrm{s}}^{(3)}$, there arises the question: What happens if we increase φ ? The front travels back, and it is possible to define an inverse critical radius $r_{\mathrm{c}}^{\mathrm{inv}}$ in a natural way. Results of our numerical investigations are summarized in table 2.

Fig. 3. The critical radius r_{c} and the inverse critical radius $r_{\mathrm{c}}^{\mathrm{inv}}$.

Table 2
The critical radius in dependence on φ

φ	r_{c} [dimensionless]	$r_{\mathrm{c}}\left[10^{-3} \mathrm{~cm}\right]$
0.05	$\in(0.2,0.3)$	$\in(0.5,0.8)$
0.1	$\in(1.2,1.4)$	$\in(3.1,3.6)$
0.2	$\in(2.2,2.4)$	$\in(5.7,6.2)$
0.3	$\in(3.2,3.4)$	$\in(8.3,8.8)$
0.4	$\in(4.2,4.4)$	$\in(10.9,11.4)$
0.5	$\in(5.6,5.8)$	$\in(14.6,16.1)$
0.55	$\in(6.8,7.4)$	$\in(17.7,19.2)$
φ	$r_{\mathrm{c}}^{\text {inv }}[$ dimensionless $]$	$r_{\mathrm{c}}^{\text {inv }}\left[10^{-3} \mathrm{~cm}\right]$
0.8	$\in(2.8,3.2)$	$\in(7.3,8.3)$
0.9	$\in(1.6,2.0)$	$\in(4.2,5.2)$
1.1	$\in(0.8,1.0)$	$\in(2.1,2.6)$
1.2	$\in(0.6,0.8)$	$\in(1.6,2.1)$

Fig. 4. Numerically determined values of critical radii r_{c} in dependence on φ.

6. Discussion

With φ nearby 0.6 , the critical radius becomes infinite for transitions in both directions. In this case, we obtain coexistence of both phases $u_{\mathrm{s}}^{(1)}$ and $u_{\mathrm{s}}^{(3)}$, because we have a time-independent spatial separatrix (standing wave). We denote the corresponding flow value by $\varphi_{\text {coex }}$.

Note that for $\varphi<\varphi<\varphi_{\text {coex }}$, only transitions $u_{\mathrm{s}}^{(1)} \rightarrow u_{\mathrm{s}}^{(3)}$, and for $\varphi_{\text {cocx }}<\varphi$ $<\varphi_{\mathrm{M}}$, only opposite transitions are possible.

The results about the magnitude of a nucleus have experimental importance if we realize the BZ system as described above. Including photosensitivity of oxygen, the reactions $\mathrm{R} 1-\mathrm{R} 4$ are valid if the reduction R 5

$$
\mathrm{Me}(\mathrm{ox})+\text { organic reductants } \rightarrow \mathrm{Me}(\text { red })+h \mathrm{Br}^{-}+\text {organic products } \quad \mathrm{R} 5
$$

does not release the inhibitor $\mathrm{Br}^{-}(h=0)$. Then the concentration of $\mathrm{Me}(\mathrm{ox})$ is not involved explicitly in the R1-R4 subset; thus it can be treated like an autonomous two-variable system as performed above.

Acknowledgements

The authors wish to thank Dr. L. Kuhnert, Dr. K.R. Schneider and Dr. K. Groeger for their interest in this work.

References

[1] N.N. Bautin and E.A. Leontovitsch, Methods of Qualitative Investigations of Dynamical Systems in the Plane (Nauka, Moscow, 1976), in Russian.
[2] W. Ebeling and R. Feistel, Physik der Selbstorganisation und Evolution (Akademic-Verlag, Berlin, 1982).
[3] R.J. Field, E. Körös and R.M. Noyes, J. Amer. Chem. Soc. 94(1972)8649.
[4] W. Geiseler and H.H. Föllner, Biophys. Chem. 6(1977)107.
[5] D. Henry, Geometric Theory of Semilinear Parabolic Equations (Mir, Moscow, 1985), in Russian.
[6] M.W. Hirsch and St. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic Press, New York, 1974).
[7] M. Kerm, Qualitative Untersuchung von Reaktions-Diffusions-Systemen und Anwendungen in der Chemie, Ph.D. Thesis, Berlin (1988).
[8] L. Kuhnert, H.-J. Krug and L. Pohlmann, J. Phys. Chem. 89(1985)2022.
[9] L. Kuhnert, L. Pohlmann, H.-J. Krug and G. Wessler, in: Selforganization by Nonlinear Irreversible Processes, ed. W. Ebeling and H. Ulbricht (Springer, Berlin, 1986).
[10] L. Kuhnert, L. Pohlmann and H.-J. Krug, Physica D29(1988)416.
[11] O.A. Ladyshenskaya, Dokl. Akad. Nauk SSSR 79(1951)723.
[12] J.D. Murray, Lectures on Nonlinear-Differential-Equation Models in Biology (Mir, Moscow, 1983), in Russian.
[13] A. Nitzan, P. Ortoleva and J. Ross, Faraday Symp. Chem. Soc. No. 9(1974)241.
[14] J. Wloka, Partielle Differentialgleichungen (Teubner, Leipzig, 1982).

[^0]: ${ }^{*} \mathbb{C}^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ consists of all functions whose derivatives admit a continuous prolongation to $\bar{\Omega}$.

