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Abstract

A new model of the Belousov ~Zhabotinskii reaction is developed. It describes bistable
behavior of the reaction. For this reaction—diffusion system existence results are proved.
The critical radius of a nucleus is defined and studied by numerical methods.

1. Introduction

Nucleation and bistability are characteristic phenomena of many autocatalytical
systems. Nitzan et al. [13] first described the nucleation of a new phase in a bistable
one-variable system using a third-order reaction function. They showed the existence
of a critical radius r., beyond which a nucleus of the new phase will grow on or
will collapse if its radius is below r.. These results are not directly applicable to
the Belousov —~Zhabotinskii reaction (BZR), whose kinetics are governed by maximum
second-order reaction terms [4]. A model of the BZR reflecting the bistability of
this reaction requires at least two variables.

Our aim is to discuss a model of bistability and nucleation in convection-free
layers of BZ solutions in petri dishes. We consider the following subsystem of the
full BZR in order to confine our model to two variables only, the concentrations
of the autocatalyst HBrO, and the inhibitor Br™:

BrO; + 2H" + Br~ —— HBrO, + HOBr R1
HBrO, + H* + Br~ —— 2 HOBr R2
BrO; + H* + HBrO, + 2 Me(red) —— 2 HBrO, + 2 Me(0x) R3
2 HBrO, —— BrO3 + H* + HOBr R4
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We neglect the concentrations of metal catalysts Me(red), Me(ox) and HOBr, and
assume that the concentrations of BrO3 and H* are constant.

Additionally, we introduce a flow term @g,—. This corresponds to the inhibitor
rclease induced both by oxygen diffusing from the air into the liquid layer [10]
and/or by light irradiation when the BZ system is photosensitive [9].

On the basis of this realistic flow term, the behavior of the system R1-R4
turns from monostability to bistability within a distinct region of ¢g,—. In the region
of bistability, the reaction—diffusion system performs transitions from one stable
state to the other if the radius of the inducing nucleus exceeds a critical value r.
The critical radius itself depends in the flow @g,-. This relation r, = r.(¢g,-) is studied
numerically. We found that the quantity r_ tends to infinity if the flow term tends
to a certain value @y - . If we take a higher value ¢ > @y~ then we observe transitions
to the other stable state.

2. The model

So, we start with the following system

2
9X =d, X +h3AX —2ka X2k XY + Kk AY,
dt ar?
oY 92y
—a“t‘ =dy ‘a—r'z— -kzXY—klAY+QJBr“, (1)

where r € R, t > 0. X = [HBrO,], Y = [BrO3], 4,, d, are diffusion coefficients of
HBrO, and Br~, respectively, and k; are the velocity constants. Table 1 contains the
values of parameters.

Table 1

Values of parameters [3, 8]

Parameter Value Unit
ky 2.1 [H']? M5t
k, 10° [HY] M5!
ky 45 [H*] M1571
ky 10° M-ls!
¢ arbitrary Ms!
[H*] 0.16 M
A 0.2 M
d, 13x107° cm?s™!
d, 1.9x 107} em?s~!
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By the ‘substitution

uy 1= 2k X/k3A,

Uy 1= kyY/ksA,

D := 107% cm%!,

x = (kyAD D)V,
t" 1= kyAt,

¢ 1= ky/(k3A)? @, -,
m = ky/ks,

b = kylky,

q = 2kiks/kyky = m/b,
dy:= d,/D,

d, := d,/D,

see [12], we obtain from (1) an equivalent dimensionless system of partial differential
equatons. Let us consider this system on a bounded interval Q, and let us establish
this sytem with no flux boundary conditions and initial value. We then obtain

au1 82u1

W =dl 322 +u1(1——u1—u2)+qu2,

ou 22u

= =d2 5 —buiuy —mup + g, )

x€ Q,t">0, du;/on(dQ) = 0, u; (0, x) = up;(x), i = 1,2.

The reaction system

Stationary solutions u, = (i, Uy,) of the corresponding reaction system

du1

— = 1—uy —uz)+quy,

% uy( 1 = U2)+quy

du

dt'2 =—buyuy —muy + @ 3

are solutions of the system

O=u;(1—uy —uz)+qua,

0= —buyuy —muy + @. 4)

The system (4) is equivalent to
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Uy = @/(m+buy), (5)
i +uf(m—b)/b+uy (p—m)/b—qe/b=0. (6)

We are only interested in real, positive solutions u{/), j = 1, 2, 3. Regarding
¢ as a function of u;: ¢ = ¢(u,;), from (6) we obtain the equivalent equation

Qouy)=uy(1—u)(m+buy)/(uy —q). @)

Let us briefly discuss this function (7): Since 1 — g > 0, ¢ tends to infinity for u; — q.
Moreover, ¢ vanishes at u; = 1, u; = 0, u; = —m/b = —q. Using parameter values
of table 1, one obtains the positive local extrema of ¢:

gy = 0.499063, @max = 2.007756,
iy, =0.002257, Qmin = 0.045723.

(100 ?H (P
Fig. 1. Bistability diagram for u,, with the parameters m = 0.008, b = 8.0,

q = 0.001. The upper branch (full line) corresponds to u’, the middle
branch (broken line) to «{, and the lower branch (full line) to u}).

In this way, we obtain the qualitative behaviour of (7) and therefore of (6), as shown
in fig. 1. Let

3) @ 1
Usy 2 usl) 2 ugl)’
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and @y:= Quin» Pm:= Pmax- The stability behavior of u{/) can be determined easily:

LEMMA 3.1

(i)  The equilibrium u{V is asymptotically stable (in the sense of Lyapunov and
with respect to system (3)), if ¢ > @p;

(i) u$ is unstable for all @, < @ < Qy;
(iii) uf® is asymptotically stable for all 0 < @ < @y.

Proof

The linearization of (3) in u, and substitution of (5) yield a (linear in
@) equation for the zero eigenvalue. This equation is equivalent to (7). Its extrema
give the points where u, changes its stability. Purely imaginary eigenvalues do not
appear. O

Now assume there is given an initial value
u(0) = ug € R (8)

We shall prove that there exists a global solution of (3), (8) for some initial values
uy. It is clear that for every u, € R?, the problem (3), (8) has a unique local solution.
Let

0<g<1,0<e< @/(m+b),

Gii={g<u £1, e<u,< ¢/m}.

THEOREM 3.2

Assume uy € G,. Then the solution u(¢’) of (3), (8) exists for all " > 0 and
is bounded, and u(t’) € G, for all ¢’ 2 0.

Proof
Checking the vector field of (3) (see' fig. 2) on the bounds of G, gives that
there is no trajectory leaving G,. Thus, the assertion is proved. O
Furthermore, the following theorem holds:
THEOREM 3.3
Closed trajectories do not exist in G.
Proof

Applying the Dulac criterion ([1], p. 120), we obtain by the Dulac function
B(ul, uz) = 1/u1:
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/m

(2)

Fig. 2. The vector field of the system (3).
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D:= 5% (B(uy,u2) fi(ur,uz)) + a%; (B(ul,uz)fz(ul,uz))

:ul—quz/u% —b-mju; <0,

where f = (f}, f,) is the reaction term in (3). This proves the assertion. O

COROLLARY 34

Letuy € Gy, ug# ul?, j=1,2,3. Then the solution u(t’ of (3), (8) converges
either to u{" or ul® for ¢’ — o, and u(z’) tends to ul? for t’ — —oo.

Proof

The assertion follows from the Bendixon theorem, see e.g. [6]. - O

4. Global existence of solutions

In this section, we shall investigate the global existence of solutions of
problem (1). For this reason, we formulate (1) as an evolution problem in a convenient
space X. Theorem 4.7 gives the existence result in X and in classical function spaces,
too. Let us introduce the following definitions and notation.

The domain Q < R", n < 3, is assumed to be an open smooth bounded
connccted set, Q2 € €.

X = L2Q,RY), lul? = [((w () + @ (0)*) dx, ue X,
Q
H* =wh(Q,RY), k=1,2,...,

n
ou |12 ofu 2
Nu il = llullz+2 | II"+...+ 2 ”g“—a— I
S0 I=(, o ly: 0% 0%
=k

For a reference of the theory of the Sobolev spaces, see [14].

Let A be the linear operator A : X — X, with D(A) := {(u;, uy) : u € C*(Q)*,
du;/dn(0Q2) = 0}:

Au = —(d,Auy, dyAu,),

where d,, d, > 0. We define the operator A to be the Friedrich extension of A.

*C=(2, R?) consists of all functions whose derivatives admit a continuous prolongation to .



366 M. Kern et al., Nucleation in a bistable system

The next lemma summarizes some simple but helpful properties of this
operator A:
LEMMA 4.1

Let d := max(d,, d,). It holds that:

i) (A + didu, u) < 2d | ul?, u € D(A).
(i) min(d,, dy) | ull?y < {(A + dld)u, u), u€ D(A).
(iii) D(A) c H', and
(Au, v) = ((d, u}, dyu3), v, u€e D), ve H.

(iv) D(A + dIid)'? = H.
(v) The operator A + dld is selfadjoint and positive.
(vi) The operator —(A + dId) generates an analytic semigroup
exp(—t(A + dld)) : X - D(A), and
exp(—t(A + did)) < c, exp(—dt/2), t=0. %)
Proof
(i) (A + didyu, u) < d(Vu, Vu) + d{u, u) < 2d | ullfn.
(iii) Sec [11].
(iv) The assertion follows from
(Agu, uy = (Agu, ASPuy = | AJu .

(vi) Compare [5]. O

Set A, := A + dld with domain D(A,) := D(A). By

uy (I—uy —uz)+quz

1
—buyuy —mu2+ @ )’ ¢.0.m. >0, g <1,

Flu) = (

a nonlincar operator F : H' — X is defined.
Now, we may write (2) as an initial value problem

du _
a7 +Au=F(u), t>0,
u(0) = ug, upg e X . (10)

(Now, we shall write.t instead of ¢’.)
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We define a solution of (10) on (0, T) tobe amap u € € (0, T), X) N C([0, T), X),
u(t) € D(A) for all t€ (0, T) and some T > 0, and which solves (10).

We shall prove the unique solvability of problem (10) by investigating the
modified system

du _
a-%Au—-Fk(u), t>0,
u(0) = ug, ug e X. an

Here, F, : X — X is the operator

U (1—uyg — ugp )+ quy
—bulkuzk —muy, + @ ’

F () :=(

and u;, are the following projections:

0 if 02 u;(x),
Uipp(x) = s u;(x) if0Lu;(x)<k;,
k,' if k,‘ < u;(x),

i = 1,2, where k; are some positive constants to be chosen later. Obviously, the
mapping u — u;, gives a pair (u,, #y;), and u,, (u,,) is bounded by 0 and k; (k;),
respectively.

LEMMA 4.2

F,: X — X is globally Lipshitzian.
Proof

15 ) = Fe ()17 = [(1 (1 = uyx = i)+ quiz = 011 (1 = 01 = 024) = g’
Q
+ (—buUjglzx — MUy + bV Vg +mvz)2)2dx
<4 J((ulk — o)+ O —udi) + (ke — V15020 )?
Q
+ g2y — v2) + B*(uy i ok — V1kV2k) + M (Up —v2)?)dx
= 4J((u1k —01)? # (upp + 016 (e — 01 + 4P (g = 12)?
Q

+ m2(uy —v2)? + (1 + b1 izx — V1£ V26 ) ) dx
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< 4]((1 +4k% + 263 (1+ %)) (ug — vy )?
Q
+ QA+ D)+ 2 +mP)(uy - v2)H)dx
= clpllu-v|*. =

The next lemma is an easy consequence of Sobolev's embedding theorems:

LEMMA 43

Let n <3, u,v€ H% lu-vl; — 0. Then,

| Fx(u) = F() [0 = O.

LEMMA 44

Let T> 0 be any positive number. There exists a unique solution u(s) of (11)
on (0, T); moreover, u € C(0, T), H).

Proof
First, we show that the integral equation

u(r) = exp(=tAq)uo + Jexp(—(t— 5)Aq)g(u(s))ds (12)
0

has a unique solution u € C([0, T), X) satisfying u(0) = u, € X, where
gu) := F(u) + du.

Consider the operator G : €([0, T), X) — C([0, T), X):
{

(Gu)(t) = exp(~tAa)ug + [exp(~(1~ $)Aa)g(u(s))ds, 1> 0.
0

Obviously, G maps C([0, T), X) into itself. Define |- ||, by

lwllp, = sup (llu(s)llexp(-ps)), p>0,
s€ [0,T)

and equip €([0, T), X). with this norm. If u, v € ([0, T), X), we conclude from (9):



M. Kern et al., Nucleation in a bistable system 369

A 1
I(Gu—-Gov)Il =1 6[cXP(—(t-- $)Ag)g(u(s)) - g(v(s)lds||
< (cup + d)/(d/2 + p)ey exp(pd)liu—vllp .
In this way, we obtain
Gu—gvll, < ciecup+d)/(d/2+p)llu—-v],. (13)
Now, we choose p > 1 such that ¢, :=c(cyp + d)/(d/2 + p) < 1, and so
IGu=Guoll, < callu~vl,. (14)

By the Banach fixed point theorem, there exists a unique fixed point u of G in
([0, T), X).

By lemma 4.3, it can be shown that u € C((0, T), H'). Now, eq. (12) gives
ue €Yo, T), X). It follows by the standard argument of Gronwall's lemma that the
solution is unique. O

LEMMA 4.5

Let uy 2 0. Then, for the solution u of (11), it holds that

u(t) 20 forall t 2 0.

Proof
After computing the scalar product with 435 and u7, it is clear that
uy=u, =0.

(Here, we use the notation u*(x) := max(u(x), 0), u~(x) := max(-u(x), 0).) 0

Now, we are able to solve problem (11):

LEMMA 4.6

Assume uy 2 0, uy € L™(Q, R?). The solution u of (11) exists on (0, e) and
satisfies:

0 < uy < max(1, || upy )

0 < u, < max(@/m, || up|l..)- (15)
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Proof

Let u be the nonnegative unique solution of (11), t 2 0. Choose the constants
ky :=max(1, || ug; ll..), kp := max(@/m, || upyll..). By the test function (u; — kp)* one
obtains

4
Iz = k2 ) (I212 = ~dy [ [(V(ua - k2)")?dxdr+ <oJ j(uz ~ky)*dxds
0Q

+

O Gy

e}

j(uz — ko Y (=buyury —muy)dxde

<-m

D Sy

1
J2 = k2)*(uz ko + k2 ) dxde+ o [z~ ko) axdr
Q 0Q

1
< (-mka + ) [ J(uz —ky)*dxds
00

<0.

Consequently, (u,(t) — k,)* = 0, and s0 u,(r) < k,. By the test function (u;(r) - kDt
we have:

1
—ll ey — k)OI /2 = —d, ”(V(ul k) dxdt+qj j(m — ky)uy dxds
0Q

!
+ [ Jn =) (1= g - wgeur e dxde
0Q

< [ fon — k1) uze(-ure + g)dxde
Q

o oc——-—.—-

IN

This gives (4, — k)*(t) = 0, so u;(t) < k. O
Now, we want to prove our main result:

THEOREM 4.7

Assume uy 20, uy € L™(Q, R?). Then there exists a unique solution u
of the problem (10) on (0, =) satisfying (15). Moreover, u(t) € (8, R?), du/de(r)
€ ©(, RY), t > 0. This means the solution exists in the classical sense.
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Proof

Let u be the solution of (11). If we choose k;:=max(l, | upl.).
ky := max(@/m, || uy,|..), then by lemma 4.6 we obtain u;,(¢) = u;(), i = 1, 2, that
is, (15) holds. Further, we have F,(u) = F(u), and u(t) is the solution of (10). Since
ui(t) < k;, te€ [0, T), u;(t) has a continuous prolongation to (0, =), and

supllu; (DI < ki, i=1,2.
>0

Consequently, u belongs to L™([0, «), X).
Using theorem 3.5.2 in [5], it follows that

%L-tf(t)e H', t>0.

Further, for u(z) € H? we have F(u) € H', ¢t > 0. In this way,

__du 1
Au= ar +F(u)e H',

and so u(r) € H?, t> 0. Now, since u(r) € H> c C(Q), F(u(?)) € €(Q) and
du =
qr e CKE), n/d<1,

i.e. du/de(t) € C(Q). This yields

Au=-— % +Fu) e CQ),

implying u(t) € €©(Q). Consequently,
du =
e c@. 0

COROLLARY 4.8

Let ug 2 0, ug, < 1, up, < ¢/m. Then the solution u of (19) exists and it holds
that

0<u <1,

0<u, < ¢/m
Let

G22={qSu1S1,OSu2S (P/m}.
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Using the same method as mentioned above but another definition of u,,, namely

q if g 2 up (x),
()= )y ifgsu(x)<1,
1 if 1<u(x),

we obtain quite similar results:

LEMMA 4.9

Let uy € G, (respectively, G,). Then the solution « of (10) exists and belongs
to G, (respectively, Gy).

5. Critical radius

The aim of this section is the investigation of the critical radius of a nucleus.
Such questions have been studied in the case of one reaction—diffusion equation
only [2]. Here, we consider the case n = 1, Q = (0, L).

DEFINITION 5.1

The quantity r_ is called critical radius with respect to (12) and the initial

u® if0<x<x,
upr (x) =19
o1 ul) ifxy <x<L,

value

u) ifo<x<x,
oo (¥) = W) ifxy <x<L, (16)

if there exists a solution u of (10) with the special initial value (16) having the
following properties:

(i) if x; > r., u(r) tends to ul» as t — oo,

(ii) for 0 < x; < r,, u(t) tends to ul! as t — o.

The problem (10) with initial value (16) was integrated by the Euler difference
method. Observing the coexistence of two asymptotically stable equilibria u{" and
ul®, there arises the question: What happens if we increase ¢? The front travels
back, and it is possible to define an inverse critical radius ri™ in a natural way.

Results of our numerical investigations are summarized in table 2.
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Fig. 3. The critical radius 7, and the inverse critical radius ri.
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Table 2

The critical radius in dependence on ¢

1] r. [dimensionless] re {107% cm]
0.05 € (0.2, 0.3) € (0.5, 0.8)
0.1 € (1.2, 1.4) € (3.1, 3.6)
0.2 € (2.2, 24) € (5.7, 6.2)
0.3 € (32,34 € (8.3, 8.8)
0.4 € (4.2, 4.4) € (10.9, 11.4)
0.5 € (5.6, 5.8) € (14.6, 16.1)
0.55 € (6.8, 7.4) € (177, 19.2)
10 rci’" [dimensionless] rci‘“ (1072 c¢m]
0.8 € (28,32 € (7.3, 8.3)
0.9 € (1.6, 2.0) € (4.2, 5.2)
1.1 € (0.8, 1.0) € (2.1, 2.6)
1.2 € (0.6, 0.8) e (1.6, 2.1)
|
|
I
] |
& l
54 I
|
I
- l
|
1 l
I
‘]-
I
L — —
01 05 10

Fig. 4. Numerically determined values
of critical radii r_ in dependence on ¢.
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6. Discussion

With ¢ nearby 0.6, the critical radius becomes infinite for transitions in both
directions. In this case, we obtain coexistence of both phases u{"’ and u{®", because
we have a time-independent spatial separatrix (standing wave). We denote the
corresponding flow value by @,.

Note that for @ < @ < @, only transitions u{" — u¥, and for @, < @
< ¢u, only opposite transitions are possible.

The results about the magnitude of a nucleus have experimental importance
if we realize the BZ system as described above. Including photosensitivity of oxygen,
the reactions R1-R4 are valid if the reduction R5

Me(ox) + organic reductants — Me(red) + A Br™ + organic products RS

does not release the inhibitor Br~(hA = 0). Then the concentration of Me(ox) is not
involved explicitly in the R1-R4 subset; thus it can be treated like an autonomous
two-variable system as performed above.
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